Abstract:In unmanned aerial systems, especially in complex environments, accurately detecting tiny objects is crucial. Resizing images is a common strategy to improve detection accuracy, particularly for small objects. However, simply enlarging images significantly increases computational costs and the number of negative samples, severely degrading detection performance and limiting its applicability. This paper proposes a Dynamic Pooling Network (DPNet) for tiny object detection to mitigate these issues. DPNet employs a flexible down-sampling strategy by introducing a factor (df) to relax the fixed downsampling process of the feature map to an adjustable one. Furthermore, we design a lightweight predictor to predict df for each input image, which is used to decrease the resolution of feature maps in the backbone. Thus, we achieve input-aware downsampling. We also design an Adaptive Normalization Module (ANM) to make a unified detector compatible with different dfs. A guidance loss supervises the predictor's training. DPNet dynamically allocates computing resources to trade off between detection accuracy and efficiency. Experiments on the TinyCOCO and TinyPerson datasets show that DPNet can save over 35% and 25% GFLOPs, respectively, while maintaining comparable detection performance. The code will be made publicly available.
Abstract:Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy, yet it faces significant challenges in communication efficiency and vulnerability to poisoning attacks. While sparsification techniques mitigate communication overhead by transmitting only critical model parameters, they inadvertently amplify security risks: adversarial clients can exploit sparse updates to evade detection and degrade model performance. Existing defense mechanisms, designed for standard FL communication scenarios, are ineffective in addressing these vulnerabilities within sparsified FL. To bridge this gap, we propose FLARE, a novel federated learning framework that integrates sparse index mask inspection and model update sign similarity analysis to detect and mitigate poisoning attacks in sparsified FL. Extensive experiments across multiple datasets and adversarial scenarios demonstrate that FLARE significantly outperforms existing defense strategies, effectively securing sparsified FL against poisoning attacks while maintaining communication efficiency.
Abstract:Knowledge distillation typically transfers knowledge from a teacher model to a student model by minimizing differences between their output distributions. However, existing distillation approaches largely focus on mimicking absolute probabilities and neglect the valuable relational inductive biases embedded in the teacher's relative predictions, leading to exposure bias. In this paper, we propose Group Relative Knowledge Distillation (GRKD), a novel framework that distills teacher knowledge by learning the relative ranking among classes, rather than directly fitting the absolute distribution. Specifically, we introduce a group relative loss that encourages the student model to preserve the pairwise preference orderings provided by the teacher's outputs. Extensive experiments on classification benchmarks demonstrate that GRKD achieves superior generalization compared to existing methods, especially in tasks requiring fine-grained class differentiation. Our method provides a new perspective on exploiting teacher knowledge, focusing on relational structure rather than absolute likelihood.
Abstract:Large language models (LLMs) have shown promise in formal theorem proving, but their token-level processing often fails to capture the inherent hierarchical nature of mathematical proofs. We introduce \textbf{Hierarchical Attention}, a regularization method that aligns LLMs' attention mechanisms with mathematical reasoning structures. Our approach establishes a five-level hierarchy from foundational elements to high-level concepts, ensuring structured information flow in proof generation. Experiments demonstrate that our method improves proof success rates by 2.05\% on miniF2F and 1.69\% on ProofNet while reducing proof complexity by 23.81\% and 16.50\% respectively. The code is available at https://github.com/Car-pe/HAGBP.
Abstract:In recent years smart glasses technology has rapidly advanced, opening up entirely new areas for mobile computing. We expect future smart glasses will need to be all-day wearable, adopting a small form factor to meet the requirements of volume, weight, fashionability and social acceptability, which puts significant constraints on the space of possible solutions. Additional challenges arise due to the fact that smart glasses are worn in arbitrary environments while their wearer moves and performs everyday activities. In this paper, we systematically analyze the space of imaging from smart glasses and derive several fundamental limits that govern this imaging domain. We discuss the impact of these limits on achievable image quality and camera module size -- comparing in particular to related devices such as mobile phones. We then propose a novel distributed imaging approach that allows to minimize the size of the individual camera modules when compared to a standard monolithic camera design. Finally, we demonstrate the properties of this novel approach in a series of experiments using synthetic data as well as images captured with two different prototype implementations.
Abstract:The content and distortion are widely recognized as the two primary factors affecting the visual quality of an image. While existing No-Reference Image Quality Assessment (NR-IQA) methods have modeled these factors, they fail to capture the complex interactions between content and distortions. This shortfall impairs their ability to accurately perceive quality. To confront this, we analyze the key properties required for interaction modeling and propose a robust NR-IQA approach termed CoDI-IQA (Content-Distortion high-order Interaction for NR-IQA), which aggregates local distortion and global content features within a hierarchical interaction framework. Specifically, a Progressive Perception Interaction Module (PPIM) is proposed to explicitly simulate how content and distortions independently and jointly influence image quality. By integrating internal interaction, coarse interaction, and fine interaction, it achieves high-order interaction modeling that allows the model to properly represent the underlying interaction patterns. To ensure sufficient interaction, multiple PPIMs are employed to hierarchically fuse multi-level content and distortion features at different granularities. We also tailor a training strategy suited for CoDI-IQA to maintain interaction stability. Extensive experiments demonstrate that the proposed method notably outperforms the state-of-the-art methods in terms of prediction accuracy, data efficiency, and generalization ability.
Abstract:Reasoning large language models are rapidly evolving across various domains. However, their capabilities in handling complex financial tasks still require in-depth exploration. In this paper, we introduce Fin-R1, a reasoning large language model specifically designed for the financial sector. Fin-R1 is built using a two-stage architecture, leveraging a financial reasoning dataset distilled and processed based on DeepSeek-R1. Through supervised fine-tuning (SFT) and reinforcement learning (RL) training, it demonstrates performance close to DeepSeek-R1 with a parameter size of 7 billion across a range of financial reasoning tasks. It achieves the state-of-the-art (SOTA) in the FinQA and ConvFinQA tasks between those LLMs in our evaluation, surpassing larger models in other tasks as well. Fin-R1 showcases strong reasoning and decision-making capabilities, providing solutions to various problems encountered in the financial domain. Our code is available at https://github.com/SUFE-AIFLM-Lab/Fin-R1.
Abstract:Recently, the rapid development of AIGC has significantly boosted the diversities of fake media spread in the Internet, posing unprecedented threats to social security, politics, law, and etc. To detect the ever-increasingly diverse malicious fake media in the new era of AIGC, recent studies have proposed to exploit Large Vision Language Models (LVLMs) to design robust forgery detectors due to their impressive performance on a wide range of multimodal tasks. However, it still lacks a comprehensive benchmark designed to comprehensively assess LVLMs' discerning capabilities on forgery media. To fill this gap, we present Forensics-Bench, a new forgery detection evaluation benchmark suite to assess LVLMs across massive forgery detection tasks, requiring comprehensive recognition, location and reasoning capabilities on diverse forgeries. Forensics-Bench comprises 63,292 meticulously curated multi-choice visual questions, covering 112 unique forgery detection types from 5 perspectives: forgery semantics, forgery modalities, forgery tasks, forgery types and forgery models. We conduct thorough evaluations on 22 open-sourced LVLMs and 3 proprietary models GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet, highlighting the significant challenges of comprehensive forgery detection posed by Forensics-Bench. We anticipate that Forensics-Bench will motivate the community to advance the frontier of LVLMs, striving for all-around forgery detectors in the era of AIGC. The deliverables will be updated at https://Forensics-Bench.github.io/.
Abstract:This paper introduces a holistic vision-language foundation model tailored for remote sensing, named Falcon. Falcon offers a unified, prompt-based paradigm that effectively executes comprehensive and complex remote sensing tasks. Falcon demonstrates powerful understanding and reasoning abilities at the image, region, and pixel levels. Specifically, given simple natural language instructions and remote sensing images, Falcon can produce impressive results in text form across 14 distinct tasks, i.e., image classification, object detection, segmentation, image captioning, and etc. To facilitate Falcon's training and empower its representation capacity to encode rich spatial and semantic information, we developed Falcon_SFT, a large-scale, multi-task, instruction-tuning dataset in the field of remote sensing. The Falcon_SFT dataset consists of approximately 78 million high-quality data samples, covering 5.6 million multi-spatial resolution and multi-view remote sensing images with diverse instructions. It features hierarchical annotations and undergoes manual sampling verification to ensure high data quality and reliability. Extensive comparative experiments are conducted, which verify that Falcon achieves remarkable performance over 67 datasets and 14 tasks, despite having only 0.7B parameters. We release the complete dataset, code, and model weights at https://github.com/TianHuiLab/Falcon, hoping to help further develop the open-source community.
Abstract:Robotic grasping in scenes with transparent and specular objects presents great challenges for methods relying on accurate depth information. In this paper, we introduce NeuGrasp, a neural surface reconstruction method that leverages background priors for material-agnostic grasp detection. NeuGrasp integrates transformers and global prior volumes to aggregate multi-view features with spatial encoding, enabling robust surface reconstruction in narrow and sparse viewing conditions. By focusing on foreground objects through residual feature enhancement and refining spatial perception with an occupancy-prior volume, NeuGrasp excels in handling objects with transparent and specular surfaces. Extensive experiments in both simulated and real-world scenarios show that NeuGrasp outperforms state-of-the-art methods in grasping while maintaining comparable reconstruction quality. More details are available at https://neugrasp.github.io/.